S

fre0ernnrn l“l

BERKELEY LAB

100G Intrusion Detection

Vincent Stoffer
Aashish Sharma
Jay Krous

Table of Contents

Background

Approach
Solution Overview

Alternative Solutions

Distribution Device

Requirements
Selection

Bro Cluster
Build Guide
Overview
Arista
Myricom
Bro Hardware
Performance
Traffic Distribution to the Cluster

Bro Cluster CPU Utilization and Performance

Performance Measure of Capture Loss

Shunting
Components of Shunting

Acknowledgements

References

Appendices
Appendix A: Arista Config

Arista 7504 configuration

Arista 7150 configuration

Appendix B: Cluster Configuration (FreeBSD)

Appendix C: Procurement Details

Avrista Procurement

Bro hardware Procurement

Myricom Drivers Procurement

Appendix D: Photo of Production Solution

2 of 32

Background

Berkeley Lab is a DOE National Laboratory operated by the University of California that conducts
large-scale unclassified research across a wide range of scientific disciplines. Berkeley Lab was a pioneer
in the formation and use of the modern Internet and continues to make incredible demands on high
performance computing and high speed networks to fulfill its scientific mission.

Primarily driven by the data output of modern scientific instruments and the data transfer needs of
scientists, network traffic on the Energy Sciences Network (ESNet) has roughly doubled every 18 months
for the past 10 years no(see Figure 1). ESNet is hosted at and is the primary network provider for Berkeley
Lab. ESnet completed an upgrade to its backbone network to 100Gbps in 2012, and now nine of the DOE
national laboratories, major universities, and other network providers also peer with ESNet at 100Gbps.

March 2015:

18.5PB
2% 1016 \

" Bytes of Science Data Transferred Each Month
e by the Energy Sciences Network

1.6 x 106 =
1.4 x 106
1.2 x 1016

1% 1016 s

Total

8 x 10%°
6x 10'°
4% 10!% .

2x 1018 =

1]

Feb-94 Apr-98 2-Jun G-Aug 10-Oct 14-Dec
Month

Figure 1: ESnet traffic growth

While 100Gbps links have become more prevalent, security operations’ ability to maintain network
monitoring at this traffic volume has not kept pace. As of this writing, no commercially available 100G
monitoring solutions provide functional parity with Berkeley Lab’s network monitoring approach.

Comprehensive monitoring is a significant challenge and can become a barrier to implementation of 100G
networks, or worse, security monitoring requirements can be weakened to expedite an implementation. The
Berkeley Lab scientific mission and fundamental approach to cybersecurity required that we overcome
these challenges, and in June 2014 we began a project to design and implement a system capable of
monitoring a 100G network.

Approach

Our approach was to build a system based upon the 100G prototyping work performed by Campbell and
Lee in “Intrusion Detection at 100G™" and “Prototyping a 100G Monitoring System.” The basic methodology
of our solution is to break down the 100G network connection into smaller pieces of traffic, while preserving
the affinity of individual network sessions to a single analysis process. We then distribute that analysis
across many dozens or hundreds of worker processes, allowing the system to scale up to speeds of 100G.
We also implement a unique traffic reduction mechanism called “shunting” to further shed load from the
analysis pipeline.

Several components comprise the network monitoring system:

e Traffic distribution—a device capable of aggregating, filtering, and distributing the 100G traffic to
multiple systems.
Host distribution—a mechanism to further divide the traffic at the host level into smaller pieces.

e Network intrusion detection system (IDS)—to perform distributed analysis on the traffic received at
the host.

e Operating system (OS)—the physical hardware and operating system used to run the IDS nodes.

The traffic distribution device performs several critical functions. It aggregates traffic from multiple taps
(including 100G), performs filtering, and distributes the traffic in an even way to analysis hosts at 10G
speeds. In the past, the functions of aggregation, distribution, and filtering have sometimes necessitated
separate hardware devices or software. The current generation of traffic distribution devices collects these
functions into a single piece of hardware. We defined requirements that such a device needs to meet for
our operation and talked to many of the major device vendors to evaluate available options. We were
particularly interested in commodity hardware products for reduced costs and for solutions that would
support next-generation, open-standards traffic distribution, such as OpenFlow. Further details about our
evaluation process are covered in the “Distribution Device” section.

The traffic from the distribution device arrives at the host’s network card at 10G, which is too much for a
single IDS process to handle. The host’s network card further divides the 10G stream into smaller pieces,
which can be handled by a single IDS process. This replicates the previous distribution step but at the host
level. We evaluated several options for host distribution, our primary requirement being that it would
support our preferred OS of FreeBSD.

By passing through both the traffic and host distribution, the traffic finally reaches a volume that can be
effectively analyzed by a single IDS worker process. A distributed network IDS is now needed to perform
analysis across many dozens or hundreds of workers, all acting on a small fraction of the overall traffic
volume. Although many network IDS products are available, there are only a few options to chose from
when evaluating cluster capable systems that can handle 100G traffic volumes.

As we note in the “Alternative Solutions” section of this paper, there are several viable options for each of
these components. The particular combination of components we selected was informed by our local
expertise and the experience of our team, institution, and colleagues.

Solution Overview

We chose the following technological components to create our 100G monitoring system:

Network IDS—Bro Network Security Monitor
OS—FreeBSD

Our monitoring system runs completely out of band, meaning it takes traffic from optical taps and operates
only on the duplicated traffic; it does not sit in-line (see Figure 2). Alerts and actions generated by the IDS
can affect network traffic (by placing blocks, for example) but these processes happen in parallel to normal
network operation. This separation allows the monitoring system to scale to greater network speeds and

Traffic distribution—Arista switches (7150 and 7504)
Host distribution—Myricom network interface cards (NIC) and Sniffer 10G software

also removes the monitoring system from a critical dependency for normal network operation.

Border Router

Optical tap

(@8] (4+—>

IIII

100G
monitoring
solution

Internal Network
Ooooooo

Qut from Taps
MNetwork Traffic

Figure 2: Simplified flow diagram of the network and monitoring system

Figure 3 is a diagram of the 100G monitoring solution. The Arista 7504 is at the top of the diagram. This
device performs two functions: It aggregates the inputs of the optical taps from Berkeley Lab’s Internet
connections and creates a 10G Link Aggregation Group (LAG) of that aggregated traffic to pass to the 7150
device.

In from taps
Out to Bro

ESnet 100G TX/RX] Arista 7504

ESnet 10G TX/RX

Cenic 10G TX/RX (LAG) Link Aggregation Group
2% UCB 10G TX/RX tcp sessions span multiple links

Arista 7150
Symmetric Hashing via DANZ Shunt rules to Arista API ~ W
tcp sessions one per link permit control packets N
deny data packets \
\
]

Bro host and
manager

Figure 3: Block diagram of 100G cluster setup showing 100G feed going to the Arista (7504), which uses an
Arista 7150 for symmetric hashing/load-balancing. Traffic is then fed to the Bro cluster using Myricom
cards.

Below the 7504 is the Arista 7150. This device performs the critical function of ensuring each TCP session
is distributed on a single link. This function is provided by the Arista DANZ technology through symmetric
hashing. As of this writing, symmetric hashing is not currently available in the Arista 7504; once the code
that supports symmetric hashing is available on the 7504, the 7150 can be eliminated if desired.

The bottom of the diagram shows the Bro cluster. Each Bro node is built on commodity hardware described
in more detail in the “Build Guide” section of this paper. A Myricom 10G NIC is installed on each Bro node.
The NIC (and associated software) further divides the traffic to multiple Bro processes running on the node.
A single Bro node is designated the Bro manager, which aggregates events from the other Bro nodes,
creates logs, and controls shunting.

6 of 32

On the right side of the diagram the shunting process is represented by the dashed red line. In real-time,
Bro detects specific large data flows based on predetermined characteristics and communicates with the
Arista 7150 via an API to stop sending those flows to Bro for analysis. The shunt rules apply an ACL to the
Arista which allows control packets to continue but ignores the remaining “heavy tail” of the data volume.
This allows Bro to maintain awareness and logs of these shunted large flows but dramatically reduce the
analysis load necessary to process traffic. Shunting is discussed in further detail in the “Shunting” section.

Alternative Solutions

The following table summarizes the technology stack implemented at Berkeley Lab.

Table 1: Berkeley Lab technology stack

Traffic distribution Host distribution IDS (O

Arista (7504+7150) Myricom Bro FreeBSD
10G-PCIE2-8C2-2+
and Myricom 10G
sniffer drivers

Our specific choices for these components were informed by evaluation, local expertise, and experience
but are not the only choices. Table 2 provides alternative tools and technologies for the various building
blocks of a 100G monitoring solution.

Table 2: Alternative technology stacks

Distribution device Traffic split/node IDS (0K
e Arista e PF_RING e Snort e Linux
e Brocade e Packet Bricks + e Suricata
e Endace netmap
e Gigamon e Endace DAG
e OpenFlow / SDN

Distribution Device

Requirements

Berkeley Lab has been operating 10G network monitoring infrastructure since 2007. We have used a
variety of distribution devices, including Apcon and most recently cPacket cVu devices. The cPackets
served as a reference as we developed our requirements for a 100G distribution device. We needed to
maintain the ability to aggregate, distribute, and filter like the cPacket, but also needed to support multiple
100G and 10G links.

Our requirements were to support the following:

e Input ports
o Two 100G input ports to monitor both transmit and receive on a 100G link
m This would handle our primary internet connection to ESnet
m Needed to support 100G-LR4 optics using optical taps
m Scaling beyond two 100G ports was not a requirement but considered a desirable
future capability
o Eight 10G interfaces to allow backup links to be aggregated
m Transmit and receive for all backup links (secondary connection to ES.net, UC
Berkeley, CENIC, off-site links, Science DMZ, etc.)

e Output ports
o Fourteen 10G interfaces (minimum) to feed a cluster-capable IDS and other standalone
monitoring systems
m Five to ten 10G links for the proof-of-concept cluster system
m Enough ports to handle scaling up towards 100G
m 1G and 10G ports to standalone monitoring systems desirable

e Aggregation and load balancing
o Ability to aggregate input ports and load balance across the output ports
m Five-tuple symmetric load-balancing (srcip,dstip,srcport,dstport,protocol)
m Every port can be assigned to input or output
m Separate input and output port groups
m Port speed agnostic (1/10/100G)

e Filtering

o TCP flag and IP header filtering to enable granular control and filtering of traffic stream
m Filtering to exclude data and allow only control packets (see shunting section)
m Arbitrary IP headers and TCP flags for testing and development
m |Pv6 filtering

o Filters on input or output ports to enable flexibility and prevent oversubscription
m Filter on input or output ports or groups
m APl or CLI interface to automate filtering

Selection

Over the course of a year, we researched available packet distribution devices and evaluated three devices
on-site (see Table 3).

Table 3: Device evaluations

Device Met requirements Pros Cons
Arista Yes API, GUI, SDN Two devices initially
(7150, 7504) capability needed for 100G, no
IPV6 filtering at testing
time
Brocade MLXe Yes Lowest cost, SDN No GUI, no API
capability
EndaceAccess No (no 10G input ports) Form factor, first to Two devices needed
market for bi-directional, no
filtering, cost

We constructed a testbed of a 100G link and duplicated traffic over 10G for input. We used both raw
captures to multiple interfaces (tcpdump) and Bro to test for consistency of packet delivery and
effectiveness of hashing. We compared ease of use of the devices, including CLI, GUI, and API features.
We tested creation of ports and port groups and directing traffic to and from them. We also compared the
filtering features including using our own set of TCP flags.

Part of our testing was to ensure that symmetric hashing of all flows was happening correctly across the
distribution device. When a single flow is aggregated and/or load-balanced across a number of ports, it is
critical for IDS analysis that the flow passes exclusively and reliably to a single output for further distribution
and analysis. Symmetric hashing allows a number of variables to be defined to characterize the flows with
usually some combination of source IP, source port, destination IP, destination port, and protocol. Most of
the devices we tested allow for those characteristics to be adjusted and then applied such that each
bi-directional matched flow will egress out the same link in its entirety. This is a critically important feature
that enables even distribution of traffic and allows for the horizontal scaling we describe in our monitoring
system.

After evaluation we chose Arista for the distribution devices, utilizing both a 7504 chassis and smaller 7150
switch. Brocade came in a close second and was most competitive on price alone. Arista was the only
vendor who exceeded all of our requirements. Perhaps the most compelling feature was Arista’s JSON
API, which allows us to have external programs dynamically modify the device’s packet filter settings (in our
case for Bro’s shunting capability). The density of the Arista was also compelling; in our current
configuration we are able to tap three full-duplex 100G links while still having more than 144 10G
connections available for input and output ports.

Bro Cluster

The Bro Network Security Monitor was created at Berkeley Lab in the 1990s by Vern Paxson. It is a
powerful, flexible, and open-source platform for networking monitoring and intrusion detection. Berkeley
Lab’s long history and deep experience with Bro made it a clear choice when settling on the intrusion
detection component of the monitoring system. Further, the team’s experience with Bro clustering
technology at 10G speeds led us to believe that Bro could scale towards 100G. Bro’s ability to scale
horizontally and maintain visibility at high speeds makes it uniquely suited for intrusion detection on high
speed networks. Simply put, we believe Bro to be the only IDS able to handle both the speed and analytic
complexity necessary for comprehensive networking monitoring at 100G.

The traditional approach at Berkeley Lab was a packet broker device that handled tap aggregation, filtering,
and distribution. This aggregated output was fed via a single 10G link to a device capable of further
distributing the traffic to 1G worker machines that comprised a Bro cluster. A more modern approach for
Bro clustering is a single multi-core server, directly feeding a 10G NIC and handling the distribution of traffic
with specialized network drivers and individual CPU cores as workers. After experimenting with this
approach, we felt it could easily scale up to handle >10G ftraffic using a combination of these two
approaches (many multi-core servers each operating on 10G worth of traffic).

Dividing 100G traffic into smaller pieces presents challenges for attack detection and monitoring. For
example, packets from a site-wide network scan might be separated across multiple IDS servers, which
may not see enough ftraffic individually to trigger detection thresholds. The IDS must provide a way to
correlate the traffic across multiple nodes to identify attacks that span more than one traffic stream. In a
cluster configuration, Bro has the capability to exchange low-level analysis state real-time, giving it a global
picture of network activity to provide accurate intrusion detection.

Correctly scaling a Bro cluster is highly dependent on the site’s traffic patterns, hardware capabilities of the
IDS, and the running policies. Local experimentation is needed to determine not only the correct number of
workers, but also the correct balance of workers to proxies. We suggest starting with roughly 1Gbps of
traffic per worker and scaling up or down based on traffic loss or cluster instability. We also suggest a
starting point is one proxy for every 10 workers; this ratio should be adjusted based on performance and
packet loss until stability is maintained.

For our 100G Bro cluster setup, we run one manager, five proxies, and 50 worker nodes. This architecture
first splits the 100Gb link traffic into five streams, each sent over a 10Gb link on one Bro host in the Bro
cluster. The Bro host splits the 10Gb stream into 10 1Gb streams via a Myricom network card. Each of the
10 Bro processes running a Bro host analyzes one of the 1GB streams.

Our choice of architecture splits the traffic in such a manner that each of the worker nodes sees about
1/50th of the total traffic volume. Current peak network traffic is roughly 20Gps, so each Bro process
analyzes about 400Mbps of the traffic.

The following section of this paper, 'Build Guide,' provides the details of our solution.

Build Guide

Overview

Three hardware components are needed for our build. The first is the set of Arista devices, the second is
the Myricom NIC and driver installed on each of the Bro hosts, and the third is the cluster of commodity
hardware that runs Bro. In Appendix C we provide the line items for the hardware used for our build. We
are not providing line item pricing details, but our overall build cost was under US$400,000, which included
maintenance and support for one year for most of the hardware components. The following three sections
describe each of the components of the build in more detail.

Arista

Certain Arista models support a feature called DANZ (Data Analyzer) which can place the device into
tap-only mode. This disables all switching and routing functions and allows for configurations unique to tap
aggregation, filtering, and distribution. With this feature set, we are able to create port groups specific to
input and output, apply filters to them, and distribute the traffic groups as needed for monitoring.

The Arista hardware configuration necessary to handle 100G includes two devices: one 7504 chassis,
which holds the 100G line card, and one 7150 to which it is connected. At the time of purchase, the 7500
series did not have software support for symmetric hashing, so this critical feature runs on the 7150 device.
Support for symmetric hashing is coming to the 7500 series in a future code release, which will eliminate
the need for the 7150.

All of our external links are fed into the 7504 chassis, including both 100G and 10G connections. Since we
are using optical taps, two ports must be reserved for each tapped link to account for the receive and
transmit sides of the fiber optic connection. Input port groups are created to aggregate the links together. A
series of connections must be made between the 7504 device and the 7150. We accomplished this using
10G twinax copper cables, which have a lower cost than optical fiber connections. We initially made five
10G twinax connections between the 7504 and the 7150.

A LAG combines all of these physical connection ports into a trunked connection between the two devices.
A tap aggregation group is then created, which connects the input port group to the output port group,
essentially passing through all of the collected traffic through the 7504 to the 7150 device. Once at the
7150, traffic moves through a similar group configuration. An input group is created for the connection ports
between the two devices, and an output port group is created for the 10G ports to the Bro cluster hosts.

Though the input ports are being collected together and hashed on the 7504, recall that symmetric hashing
is not possible on the 7504 at the time of this writing, so the traffic is symmetrically hashed as it ingresses
the 7150. This ensures even balancing of all incoming network flows, allowing each flow to be directed in its
entirety to a distinct Bro worker machine. The 7150 is also where we apply static filters and dynamic
shunting filters to limit the amount of traffic being sent to the Bro cluster.

One of the primary reasons that we chose the Arista was the ability to do dynamic shunting. Through use of
Arista’s JSON API, we are able to push simple access-list changes to the device from our Bro cluster. This
is described in further detail in the “Shunting” section of this paper.

After the initial setup, there is little configuration necessary for either of the Arista devices. Only when a new
port or tap is added on the input or a new cluster node or monitoring device is added on the output is it
necessary to change configuration. See Appendix A for line-by-line configuration of each Arista device.

Myricom

A necessary component of the cluster-in-a-box approach is an NIC and drivers that allow the system to
distribute the traffic to different IDS analysis threads for distributed processing. The majority of the
production monitoring systems at Berkeley Lab run FreeBSD, which somewhat limited our options for the
NICs and software drivers. The most commonly used approach on Linux for high-volume packet capture is
PF_RING, which doesn’t run on FreeBSD. We have used Myricom NICs for several years and decided to
use Myricom’s enhanced drivers to facilitate traffic distribution within the cluster. Myricom NICs are a
commodity product and are relatively inexpensive. Several other specialized NIC options exist at greater
cost, including Endace and Napatech.

Myricom’s driver is called Sniffer10G, and it is a paid, licensed feature that runs exclusively on Myricom’s
10Gb network cards. For FreeBSD the paid Sniffer10G driver is mutually exclusive with the standard
Myricom FreeBSD driver. There are two versions of the software: v2 and v3. We experimented with both
versions; the critical difference is that v2 allows only for a single application to connect to the traffic streams
(Bro, for example), and no other operations can be performed on the traffic (e.g., a tcpdump). The v3 code
allows multiple applications to connect to the traffic simultaneously, which is valuable for testing and
analysis machines running multiple monitoring tools.

Once the card is installed and the license applied to the NIC, a kernel module must be loaded on the host.
Binary packages are available from Myricom for Linux, FreeBSD, and Windows, but no source is available.
A set of tools is installed with the Sniffer package that allows for configuration and diagnostics. Once the
system configuration is complete and the kernel driver installed, a new network interface is created, which
can be read by Bro or other monitoring tools.

The Bro configuration sets up the connection to the Myricom streams and allows them to maintain affinity to
distinct CPU cores for processing. It is important that the correct CPU pinning settings are used for the OS,
number of physical cores, and number of desired workers (see the discussion in the next section, “Bro
Hardware”). Configuration for the Myricom drivers is well documented and allows for control of hashing
values among other advanced options.

Bro Hardware

The Bro cluster utilizes a manager node that oversees the operation of the entire cluster and acts as log
aggregator for the workers. The manager is assisted by proxies that facilitate communications between
manager and Bro worker nodes and within the cluster itself. Worker nodes process and analyze the
network traffic and pass it to the manager to generate logs and alerts. After some experimentation, five
proxies were chosen as the optimal number to allow one proxy for each of the Bro hosts in the cluster. Our
experiments showed that greater than one proxy per node could cause instability and less than one proxy
per node could cause congestion in the traffic analysis.

In our current setup, the 100G Bro cluster has five hardware nodes, which are commodity multi-core
systems. Each node has a Myricom NIC installed and it runs a single Bro proxy and 10 Bro workers. The
functionality of manager is also carried out by one of these nodes. This means that the manager box runs
10 workers, a proxy, and the manager processes. Our current run shows that although the manager box is
under more load, it handles the dual duties of worker and manager successfully.

Processor and CPU pinning: We chose Intel 3.5GHz Ivy Bridge dual hex-core (12 cores total) CPUs for
each of the cluster hosts. The most important consideration when choosing processors for Bro analysis is
the overall speed; we recommend purchasing the fastest processors possible. Hyperthreading is a
complication worth mentioning. We decided to enable hyperthreading because the Bro nodes are doing
other system and kernel processing in addition to Bro. Leaving a free core or two generally helps the system
perform better, and the system can take advantage of the hyperthreaded cores. When pinning CPU cores to
Bro worker processes, however, one must be cautious to use only physical cores. In Linux and FreeBSD the
numbering of physical cores is different, so the correct CPU identifiers must be set for only the physical

cores in the system. If the physical and hyperthreaded core are both selected for the same CPU, Bro will
overwhelm that core and analysis will be degraded. In the current setup we have chosen to run 10 workers
and one proxy per Bro cluster host, leaving two physical cores free for other system processes.

RAM: Each of the cluster hosts is equipped with 128GB DDR3 1600 MHz ECC/REG RAM. In our
environment, we observe that an average Bro worker consumes about 6GB of RAM if the cluster is
performing deep packet analysis with extended policies. Since each of our hosts is running 10 workers, with
6GB/worker, we need 60GB of RAM at minimum. 128GB is installed for capacity planning to scale up the
number of workers if necessary or to enable more resource intensive policies.

Disk: The current hardware setup comprises a mirror of two Intel 6GB/s 2.5” 120GB SSD drives for the OS
and a RAID-6 of six WD1000CHTZ 10K RPM 6GB/s 1TB SATA drives for the /data partition. Logs are
stored temporarily in /data before being moved to a separate archive machine. Using SSDs for the OS
partition provides us with a fast /tmp/ along with additional speed for swap space.

Please see Appendix C for Bro hardware procurement details.

Performance

As we have outlined, our current setup splits inbound traffic into five 10Gb streams (using the Arista
hardware), which are further split at the Bro hosts into roughly 1 Gbps flows to feed to each Bro worker
process (using the Myricom sniffer drivers). This gives us a total theoretical monitoring capacity of 50Gbps.
This is sufficient for our production network, which currently operates with sustained traffic of about
2-3Gbps and peaks going as high as 24 Gbps. We plan to scale beyond 50Gbps by adding additional Bro
nodes in the future; the other distribution details and configuration remain the same.

In our capacity planning we designed our system to handle what we expected to be the overall volume of
our network connection (approaching 50Gbps). By using the shunting capabilities and reducing the analysis
of large data flows, our system scales well beyond what we initially expected.

In the following sections we discuss some specific performance measurements: traffic distribution to the
cluster, CPU utilization of Bro cluster manager and workers, packet drops or traffic capture losses, and the
efficacy of the shunting mechanism.

Ll

IR

Node-3 Rx Mbps

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

—J TeeL

910L
19
90v9
1019
9645
65
981§
1887
915y
ey
996€
T99€
9S€€
TS0€
El74
v

—3 9€TC

€8T
9TsT
2441
916
119
90€

ORI 10 A W L YA

(Mbps)

Node-2 Rx Mbps

[LT

Total Bytes (Tx+Rx) - Ext-DMZ
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000
o

3

9T0L
L9
9019
1019
96L5
T6v5
9815
1881
9.5y
17244
996€
199€
95€€E
T50€
oLz
3474
9€TT
€8T
9esT
2443
916

9

90€

N

I

TZEL
9T0L
1129
90v9
1019
96L5
675
9815
1887
9ISy
7544
996€
199€
9S€€
150€

Node-5 Rx Mbps

10000
9000
8000
7000
6000
5000
4000

LT
324
9ETT
€8T
9TsT
ji4a]
916
19
90€

J

PYN)

(RN KRR WA

Node-1 Rx Mbps

RPN (1]

5000
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000
0

25000
20000
15000
10000

TZEL
910L
9
90v9
1019
9645
695
981§
1887
915y
17244
996€
199€
9SEE
TS0€
174
Wre
1224
TE8T
95T
e
916

9

s £

LTI

Node-4 Rx Mbps
NI

N

T2EL
910L
1129
9079
1019
965
65
9815
1887
9ISy
T
996€
199€
95€EE
150€
L1724
3274
1224
€8T
95T
441
916

19

90€

16000
14000
12000
10000
8000
6000
4000
2000
0

Traffic Distribution to the Cluster

Graphs of the total traffic to the cluster and then separate graphs for each Bro node
14 of 32

As shown by the Node-1 through Node-5 graphs, the average volume seen by each Bro cluster node is

generally under 1Gbps.

Figure 4

Bro Cluster CPU Utilization and Performance

Figure 5 shows the CPU performance of Bro cluster’s manager and worker nodes over a span of four days
through a series of graphs. These graphs reveal that the average CPU utilization of an individual worker is
about 20% while the Bro manager sees an average CPU utilization of about 10% with frequent spikes of up
to 80%. Assuming that traffic is being processed correctly, low CPU utilization while performing in-depth
protocol analysis is a good indicator of nearly zero packet drops.

CPU - Manager

120.00%

100.00%

80.00%

60.00%

40.00%

20.00%

0.00%

CPU Utilization of about 20% for Manager (with

120.00%

100.00%

80.00%

60.00%

40.00%

20.00%

= worker-1-1

Bworker-1-2 ®worker-1-3 Mworker-1-4 M worker-1-5

" worker-1-6

“worker-1-7 ¥ worker-1-9 worker-1-10

|

wl

WQ .‘M”th

Ml

| MWM UL ’ \l Q;L‘Iv i .MJ[;’,‘»W‘%M

uw /

CPU Utilization of about 20% for Node-1 running

frequent peaks of 80%) 10 workers
250.00% 250.00%
™ worker-2-1 ™ worker-2-2 ™ worker-2-3 ™ worker-2-4 ™ worker-3-1 ™ worker-3-2 ™ worker-3-3 ™ worker-3-4
SWOIEFSS | ISwoiker2 6 BWOrken2 7 IEWOrer28 Bworker35 Bworker-3-6 Mworker37 ®worker-3-8
worker-2-9 ® worker-2-10
200.00% 200.00%
150.00% 150.00%
100.00% 100.00%
50.00% 50.00%
0.00% 0.00%
8833 EeRy

CPU Utilization of about 20% for Node-2 running
10 workers

140.00%

®worker-4-1 ™ worker-4-2 " worker-4-3 ™ worker-4-4
® worker-4-5 " worker-4-6 " worker-4-7 " worker-4-8
120.00% | worker-4-9 wworker-4-10
100.00%
80.00%
60.00%
40.00% |

20.00%

0.00%

CPU Utilization of about 20% for Node-4 running
10 workers

CPU Utilization of about 20% for Node-3 running

10 workers
120.00%
Bworker-5-1 Mworker-5-2 Mworker-5-3 ®worker-5-4 ¥ worker-5-5
®worker-5-6 M worker-5-7 M worker-5-8 worker-5-9 ¥ worker-5-10
100.00%
80.00%
60.00%
40.00%

20.00%

0.00%

CPU Utilization of about 20% for Node-5 running
10 workers

Figure 5: CPU utilization of Manager and worker Bro processes across 5 physical nodes of the cluster

15 of 32

Performance Measure of Capture Loss

This section covers the amount of packet drops seen across the 50 worker nodes. These packet drops are
calculated using the capture_loss.bro policy which keeps track of the TCP state of connections, and any
major gaps in the content are inferred to be packet drops. The bars in Figure 6 represent the percentage of
packets dropped out of the total number of packets over 15 minutes. The figure shows the average for
packet drops is around 0.05% sustained with peaks of about 3—4%.

% Packet Drops on Worker Nodes
0.0006

0.0005

0.0004 — T 1 1 T T O S S T § T O 0 T 01 S § A O 1 O | A

oo0003 ————F—7F+—F——"—""+——F++—+—F+—+—+HHt+—+—-—++—F1+r—F+—1Tt+—++——+——+H+HH

0.0002 HH T HHHTH HHH | H Hr 71—

B 1 . ¢ (I

HM N A MMM A A MINNO TMINS A HMRED A MINS DA MINS O HMINND SMINGS O = MINNO =MINS O o MmN o m
SRS AR AR R AN NS AT eSS RS RRENRAS s Saaassagigsgaaasansa

Figure 6: % packet drops seen across all the 50 worker nodes of the cluster

Shunting

Shunting takes advantage of the “heavy tail effect” to dynamically reduce the amount of traffic processed by
the IDS. Heavy tail effect refers to the observation that a small number of network flows will dominate the
overall volume of data transferred for a given time. These data transfers are also called “bulk transfers” or
“elephant flows.” By identifying bulk transfers, which are well known and understood from a security
perspective, we can use shunting to eliminate these flows from processing by the IDS, further reducing the
processing needs and cost of the system. By using the shunting system we have outlined, we have
achieved massive savings in IDS processing, in some circumstances reducing the amount of traffic
processed by a factor of 10.

Bro’s reaction framework provides the capability to identify and classify these large uninteresting traffic
connections and communicate with the traffic distribution device (in our case, the Arista 7150) to stop
sending the data component of the network flow for further analysis. These connections can be matched on
specific source and/or destination addresses or any combination of traffic characteristics that can be
defined in Bro’s policy language. In our case we are shunting well known bulk data transfers which use the
GridFTP protocol as well as large FTP and HTTP connections over a specific size threshold.

On the Arista the shunting is done with a simple four-tuple ACL (src host, src port, dst host, dst port) which
can be dynamically controlled by Bro through use of a script called Dumbno. The ACL is designed to pass
all control packets, which means Bro maintains accurate information about the connection, including total

size and duration. This provides critical metadata about the ongoing data transfer and also allows Bro to
remove the corresponding ACL once a shunted connection has ended.

Dumbno uses Arista’s JSON API to communicate directly between Bro and the Arista device to create and
manage the ACLs. Dumbno was written by Justin Azoff (currently at NSCA) and is available from

https://github.com/JustinAzoff/dumbno.

Components of Shunting

There are three components to shunting.

1. Bro’s reaction framework: This module of Bro is primarily responsible for identifying the bulk flows
and triggering a block. Once Bro identifies a connection as “bulk” (based on various protocol-level
heuristics), Bro triggers a “Bulk::connection_detected” event. The following code snippet highlights
the event definition as well as the React::shunt() function which is called to trigger an action to
shunt a connection:

event Bulk::connection detected(c: connection)
{
local action = (c$orig$size > c$Sresp$size) ? React::SHUNT ORIG :
React: :SHUNT RESP;
React::shunt(c, "bulk", action);

}

The React::shunt() function calls an external script to connect with the Dumbno daemon (see
below) which generates and implements ACLs on the Arista in real-time.

2. Dumbno daemon/script: The Dumbno daemon is a python script to facilitate communication
between Bro and the Arista device. The box below illustrates an ACL rule triggered by the Dumbno
script after Bro determines that a connection is a bulk transfer:

2015-01-30 04:07:46,857 INFO op=ADD seg=33475 rule=u'tcp host 54.183.14.226
eq 80 host 131.243.191.181 eqg 47000"'

2015-01-30 04:08:44,983 INFO op=REMOVE acl=bulk 1 seg=33475 rule="deny tcp
host 54.183.14.226 eq www host 131.243.191.181 eq 47000" matches=0

The op=ADD operation is performed when a bulk connection is identified, and Bro’s React::shunt() function
supplies the connection specifics to Dumbno. The Arista continues to send control packets to Bro while
filtering the data packets. When the connection completes (based on the TCP state or Bro’s internal
timers), Bro triggers another call to Dumbno, which processes the op=REMOVE operation, removing the
ACL from the Arista. By dynamically removing the ACL after completion, the number of ACLs can be
prevented from growing until resources are exhausted.

The box below shows a specific shunted HTTP connection from the Bro connection log. This connection
lasted for ~280 seconds and was shunted when the connection reached 150 Mb in size. All data before

https://github.com/JustinAzoff/dumbno

150Mb were analyzed by Bro as well as the control packets, which closed the connection.

Jan 30 04:07:11 CAlIv61BX3YxDFSdod 131.243.191.181 47000
54.183.14.226 80 tcp http 280.754874 129 154300309
SF T 2154880 ShADadfFr 42623 2216689 108240 158909881

(empty) worker-3-5

Shunting Effectiveness

Figure 7 illustrates the effectiveness of shunting. Bro has identified connections (as illustrated by the yellow
series) and instructed the Arista to stop sending the remaining data of those connections to the cluster for
analysis. The figure shows that, on average, shunting reduces the traffic from around 10Gbps in the original
stream to about 1 Gbps sent to the cluster. The “To IDS” series highlights the total traffic seen by the Bro

cluster after shunting. The spikes show several large flows of 8—10.5Gbps being removed from analysis
through the shunting mechanism. These large spikes generally occur when applications like GridFTP or
SSH are doing long running, large data transfers.

mmm 10 IDS Filtered
12,000

10,000
8,000

8,000

Mbps

4,000

2,000 | I| ' | I I
0

S $ S
$.

N

aﬁiﬁ

2

Figure 7:Shunting in action: bytes filtered by active shunting

18 of 32

Figure 8 shows the number of ACL operations per day where the Bro cluster identified and shunted
connections which were characterized as uninteresting and presenting no security risk. For the current
100G cluster setup, we identify GridF TP and any connections > 2GB (the vast majority of such connections
are SSH, HTTP, FTP data transfers) as potential candidates for shunting.

Shunting Operations Per Day (Jan-Feb-2015)

90000

80000

70000

60000

50000

40000

30000

20000

10000 -

1115
1215
13/15
1415
1/5/15
1/6/15
1115
1/8/15
2115
M5

1/9/15
11015
1115
112015
1/13/15
114015
1/15/15
1/16/15
11115
1/18/15
1/19/15
1/20/15
12/
1205
12315
14015
1/25/15
1/26/15
12015
1/28/15
1/29/15
1/30/15
13115

Figure 8: ACL transactions showing the number of shunting operations executed on the Arista

19 of 32

Acknowledgements

This work was supported in part by Wayne Jones, the Acting Associate Administrator for Information
Management and Chief Information Officer within the Office of the Chief Information Officer at the National
Nuclear Security Administration within the U.S. Department of Energy.

Strategic guidance and project support was provided by Rosio Alvarez, Ph.D., Chief Information Officer at
Berkeley Lab.

We would also like to thank the following people for their technical support of this project: Robin Sommer,
Scott Campbell, Seth Hall, Justin Azoff, James Welcher, Craig Leres, Partha Banerjee, Miguel Salazar, and
Vern Paxson.

Earlier versions of this document were improved thanks to editorial reviews by Michael Jennings, Adam
Slagell, Scott Campbell, Robin Sommer, and Rune Stromsness. We also thank Jessica Scully for technical
editing.

The following organizations also provided technical guidance or hardware to support our evaluation
process: ICSI, Broala, Arista, Brocade, and Endace.

Please direct questions or comments about this document to security@lIbl.gov.

References

This section provides links to relevant background reading or reference material for the technology used in
our 100G IDS implementation.

10.

11.

Campbell, Scott, and Jason Lee, “Intrusion Detection at 100G,” the International Conference for
High Performance Computing, Networking, Storage, and Analysis, November 14, 2011.

Campbell, Scott, and Jason Lee, “Prototyping a 100G Monitoring System,” 20th Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing (PDP 2012),
February 12, 2012, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6169563.

Paxson, Vern, “Bro: A System for Detecting Network Intruders in Real-Time,” in Proceedings of the
7th USENIX Security Symposium, San Antonio, TX, 1998.

Leland, W., M. Taqqu, and Wilson D. Willinger, “On the Self-Similar Nature of Ethernet Traffic,”
Proceedings, SIGCOMM 93, September 1993.

Vallentin, M., R. Sommer, J. Lee, C. Leres, V. Paxson, and Brian Tierney, “The NIDS Cluster:
Scalable, Stateful Network Intrusion Detection on Commodity Hardware,” Proceedings RAID 2007,
http://www.icir.org/robin/papers/raid07.pdf.

Weaver, N., V. Paxson, and J. Gonzalez, “The Shunt: An FPGA-Based Accelerator for Network
Intrusion Prevention,” Proceedings FPGA 07, February 2015,
http://www.icir.org/vern/papers/shunt-fpga-2007.pdf.

Schneider, F., J. Wallerich, and A. Feldmann, “Packet Capture in 10-Gigabit Ethernet
Environments Using Contemporary Commodity Hardware,” PAM 2007, Louvain-la-neuve, Belgium.

PF_RING: High-speed packet capture, filtering and analysis (n.d.), retrieved February 20, 2015,
from http://www.ntop.org/products/pf_ring/.

Myricom Sniffer 10G: Sniffer10G Documentation and FAQ (n.d.), retrieved February 20, 2015, from
https://www.myricom.com/software/sniffer10g.html.

Endace DAG Data Capture Cards (n.d.), retrieved February 20, 2015, from
http://www.emulex.com/products/network-visibility-products-and-services/endacedag-data-capture-
cards/features/.

Napatech Products (n.d.), retrieved February 20, 2015, from http://www.napatech.com/products.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6169563
http://www.icir.org/robin/papers/raid07.pdf
http://www.icir.org/vern/papers/shunt-fpga-2007.pdf
https://www.myricom.com/software/sniffer10g.html

Appendices

Appendix A: Arista Config

Arista 7504 configuration

! device: arista7504 (DCS-7504, EOS-4.14.4F)
!
! boot system flash:/E0S-4.14.4F.swi
!
transceiver gsfp default-mode 4x10G
!
hostname arista7504
ip name-server vrf default 131.243.5.1
ip domain-name lbl.gov
!
ntp server tic.lbl.gov
ntp server toc.lbl.gov
!
ptp hardware-sync interval 1000
!
spanning-tree mode mstp
!
no aaa root
!
username admin role network-admin secret
!
tap aggregation
mode exclusive
!
interface Port-Channell
description arista7150
switchport mode tool
switchport tool group set CENIC-er2 ESnet-erl-100G UCB-erl UCB-er2
!
interface Ethernet3/1/1
description "ESnet 100G RX"
switchport mode tap
switchport tap default group ESnet-erl-100G
i

interface Ethernet3/1/2

|

i
interface Ethernet3/2/1

description "ESnet 100G TX"

switchport mode tap

switchport tap default group ESnet-erl-100G
i

interface Ethernet3/2/2

!

i
interface Ethernetd/5
description "in from erl-UCB tap - rx"
switchport mode tap
switchport tap default group UCB-erl
!
interface Ethernetd/6
description "in from erl1-UCB tap - tx"
switchport mode tap
switchport tap default group UCB-erl
!
interface Ethernetd/7
description "in from er2-UCB tap - rx"
switchport mode tap
switchport tap default group UCB-er2
!
interface Ethernet4/8
description "in from er2-UCB tap - tx"
switchport mode tap
switchport tap default group UCB-er2
!
interface Ethernetd/9
description "in from CENIC-er2 tap - rx"
switchport mode tap
switchport tap default group CENIC-er2
!
interface Ethernet4/10
description "in from CENIC-er2 tap - tx"
switchport mode tap
switchport tap default group CENIC-er2

interface Ethernet4/11

!

i

interface Ethernetd4/17
description "LAG to arista7150"
channel-group 1 mode on
switchport mode tool

!

interface Ethernetd4/18
description "LAG to arista7150"
channel-group 1 mode on
switchport mode tool

!

interface Ethernet4/19
description "LAG to arista7150"
channel-group 1 mode on
switchport mode tool

!

interface Ethernetd/20
description "LAG to arista7150"
channel-group 1 mode on
switchport mode tool

!

interface Ethernetd4/21
description "LAG to arista7150"
channel-group 1 mode on

switchport mode tool

!
interface Managementl/1

ip address

!

no ip routing

i
management api http-commands

no shutdown

end

Arista 7150 configuration

! device: arista7150 (DCS-7150S5-52-CL, EOS-4.13.9M)
!
! boot system flash:/E0S-4.13.9M.swi
!
transceiver gsfp default-mode 4x10G
!
load-balance policies
load-balance fm6000 profile symmetric
no fields mac
fields ip protocol dst-ip dst-port src-ip src-port

distribution symmetric-hash mac-ip

1
hostname arista7150
ip name-server vrf default 131.243.5.1
ip domain-name lbl.gov
!
ntp server tic.lbl.gov
ntp server toc.lbl.gov
!
spanning-tree mode mstp
!
no aaa root
!
username admin role network-admin secret
!
tap aggregation
mode exclusive
!
interface Port-Channell
description arista7504-in
ingress load-balance profile symmetric
ip access—-group bulk 1 in
switchport mode tap
switchport tap default group 100G test
!
interface Port-Channel?2

description 100G-out

switchport mode tool

switchport tool allowed vlan 1,517,1204,1206,1411,1611

switchport tool group set 100G test

!

interface Ethernetl?2

ingress load-balance profile symmetric

ip access-group bulk 1 in

switchport mode tap

i

interface Ethernetl?
description Link to arista7504
channel-group 1 mode on
switchport mode tap

!

interface Ethernetl8
description Link to arista7504
channel-group 1 mode on
switchport mode tap

!

interface Ethernetl9
description Link to arista7504
channel-group 1 mode on
switchport mode tap

!

interface Ethernet20
description Link to arista7504
channel-group 1 mode on
switchport mode tap

!

interface Ethernet2l
description Link to arista7504
channel-group 1 mode on

switchport mode tap

|
interface Ethernet36
description 100G-mgr

channel-group 2 mode on

#1

#2

#3

#4

#5

switchport mode tool

!

interface Ethernet37
description 100G-01
channel-group 2 mode on

!

interface Ethernet38
description 100G-02
channel-group 2 mode on

!

interface Ethernet39
description 100G-03
channel-group 2 mode on

!

interface Ethernet40
description 100G-04

channel-group 2 mode on

i

interface Managementl
ip address

!

ip access-list bulk 1
statistics per-entry
10 permit tcp any any fin
20 permit tcp any any syn
30 permit tcp any any rst
100001 permit ip any any

!

ip route

!

no ip routing

!

management api http-commands

no shutdown

end

Appendix B: Cluster Configuration (FreeBSD)

[broR100G-mgr /usr/local/bro/etcl$ cat node.cfg
Below is an example clustered configuration.

[manager]
type=manager
host=100G-mgr.1lbl.gov

[proxy-1]

type=proxy

host=100G-01.1bl.gov

env_vars=LD LIBRARY PATH=/usr/local/opt/snf/lib:$PATH

[worker-1]

type=worker

host=100G-01.1bl.gov

interface=myri0

1b method=myricom

1b procs=10

pin cpus=3,5,7,9,11,13,15,17,19,21

env_vars=LD LIBRARY PATH=/usr/local/opt/snf/lib:$PATH,
SNF_DATARING SIZE=0x100000000, SNF_NUM RINGS=10, SNF FLAGS=0x1l

[proxy-2]

type=proxy

host=100G-02.1bl.gov

env_vars=LD LIBRARY PATH=/usr/local/opt/snf/lib:$PATH

[worker-2]

type=worker

host=100G-02.1bl.gov

interface=myriO

1b method=myricom

1b procs=10

pin cpus=3,5,7,9,11,13,15,17,19,21

env_vars=LD LIBRARY PATH=/usr/local/opt/snf/lib:$PATH,
SNFiDATARINGisIZEZOXIOOOOOOOO, SNFiNUMiRINGSZIO, SNFiFLAGSZOXl

[proxy-3]

type=proxy

host=100G-03.1bl.gov

env_vars=LD LIBRARY PATH=/usr/local/opt/snf/lib:$PATH

[worker-3]

type=worker

host=100G-03.1bl.gov

interface=myri0

1b method=myricom

1b procs=10

pin cpus=3,5,7,9,11,13,15,17,19,21

env_vars=LD LIBRARY PATH=/usr/local/opt/snf/lib:$PATH,

SNF DATARING SIZE=0x100000000, SNF NUM RINGS=10, SNF FLAGS=0x1l

[proxy-4]
type=proxy
host=100G-04.1bl.gov

env_vars=LD LIBRARY PATH=/usr/local/opt/snf/lib:$PATH

[worker-4]

type=worker

host=100G-04.1bl.gov

interface=myri0

1b method=myricom

1b procs=10

pin cpus=3,5,7,9,11,13,15,17,19,21

env_vars=LD LIBRARY PATH=/usr/local/opt/snf/lib:$PATH,
SNFiDATARINGisIZEZOXlOOOOOOO0, SNFiNUMiRINGSZlO, SNFiFLAGSZOXl

[proxy-5]

type=proxy

host=100G-mgr.1lbl.gov

env_vars=LD_ LIBRARY PATH=/usr/local/opt/snf/lib:$PATH

[worker-5]

type=worker

host=100G-mgr.1lbl.gov

interface=myriO

1b method=myricom

1b procs=10

pin cpus=3,5,7,9,11,13,15,17,19,21

env_vars=LD LIBRARY PATH=/usr/local/opt/snf/lib:$PATH,

SNF DATARING SIZE=0x100000000, SNF NUM RINGS=10, SNF FLAGS=0x1l

Appendix C: Procurement Details

Arista Procurement

10.

11.

12.

Arista Hardware:GSA-DCS-7504E-BND
Arista 7504E chassis bundle. Includes 7504 chassis, 4x2900PS, o6xFabric-E
modules, 1lxSupervisorE

Arista Hardware:GSA-DCS-7500E-SUP#
Supervisor module for 7500E series chassis (ships in chassis)

Arista Hardware:GSA-DCS-7500E-6C2-LC#
6-port 100GbE CFP2 wire-speed linecard for 7500E Series (ships in Chassis)

Arista Hardware:GSA-DCS-7500E-48S-LC#
48 port 10GbE SFP+ wire-speed linecard for 7500E Series (ships in chassis)

Arista Hardware:GSA-CFP2-100G-LR4
100G LR Transceiver CFP2, 10KM

Arista Hardware:GSA-DCS-7150S-52-CL-F
Arista 71505, 52x10GbE (SFP+) switch with clock, front-to-rear air, 2xAC,
2xC13-Cl4 cords

Arista Hardware:GSA-LIC-FIX-2-7
Monitoring & provisioning license for Arista Fixed switches 40-128 port 10G
(2TP, LANZ, TapAgg, API, Time-stamping, OpenFlow)

Arista Hardware:GSA-SFP-10G-SR
10GBASE-SR SFP+ (Short Reach)

Arista Hardware:GSA-SFP-10G-LR
10GBASE-LR SFP+ (Long Reach)

Arista Hardware:GSA-SFP-1G-T
1000BASE-T SFP (RJ-45 Copper)

Arista Hardware:GSA-CAB-SFP-SFP-0.5M
10GBASE-CR twinax copper cable with SFP+ connectors on both ends (0.5m)

Arista Hardware:GSA-CAB-SFP-SFP-3M
10GBASE-CR twinax copper cable with SFP+ connectors on both ends (3m)

Bro hardware Procurement

We purchased five of the following pieces of hardware through a local small vendor of hardware. Note the
Myricom network cards are included.

FT-E5-2643V2/2U, Intel Dual Xeon (Ivy Bridge) E5-2643V2 3.5GHz 2U
Motherboard -SM, X9DRi-F
Intel E5-2643V2 3.5GHz Ivy Bridge (2x6-=12 Cores)
Copper Base CP0219 CPU Cooler Active
128GB DDRIII 1600MHz ECC/REG - (8x16GB Modules Installed)
On Board 10/100/1000
On Board VGA
On Board IPMI 2.0 Via 3rd. Lan
Intel 120GB SSD 6GB/s 2.5"
. WD1000CHTZ 1TB 10KRPM 6GB/s SATA
. 10G-PCIE2-8C2-2S+; Myricom 10G "Gen2" (5 GT/s) PCI Express NIC with two SFP+
. Myricom 10G-SR Modules
. LSI 9271-8i 8 Ports Raid
. LSI Cache Vault LSI 00297
. LSI Mounting Board LSI00291
. SMCi Chassis 213LTQ-R720LPB (black)
. 720W high-efficiency (94%+) redundant power supplies

0 J o U w N

L = T T o = S S S SR Ve
B N R N S =

Myricom Drivers Procurement

In addition to purchasing the Myricom hardware, to use the advanced feature of the Myricom cards to
distribute traffic additional drivers must be purchased. Myricom requires the serial number of the card to link
it to the driver license.

1. 10G-SNF3-LICENSE - Version 3 license

Appendix D: Photo of Production Solution

—', ﬁ hi/‘ oo

!"H

